## The Chain Rule

Chain Rule: If $y=f(u)$ is differentiable function of $u$ and $u=g(x)$ is a differentiable function of $x$, then $y=f(g(x))$ is a differentiable function and

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

or, equivalently,

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

EX:

| $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$ | $\boldsymbol{u}=\boldsymbol{g}(\boldsymbol{x})$ | $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{u})$ |
| :---: | :--- | :--- |
| $y=\frac{1}{\sqrt{x+1}}$ |  |  |
| $y=\tan (\pi x+1)$ |  |  |
| $y=\sqrt{3 x^{2}-x+1}$ |  |  |

EX: Find $y^{\prime}$ for $\left(3 x^{2}+1\right)^{4}$

General Power Rule: If $y=[u(x)]^{n}$, where $u$ is a differentiable function of $x$ and $n$ is a rational number, then

$$
\frac{d y}{d x}=n[u(x)]^{n-1} \frac{d u}{d x}
$$

Or, equivalently,

$$
\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}
$$

EX: Find the derivative: $f(x)=\frac{2}{\left(1-x^{2}\right)^{3}}$

EX: $y=\sin 4 x^{2}$

EX: $f(x)=x^{2} \sqrt[3]{x^{2}+5}$

EX: $h(t)=\left(\frac{t^{2}}{t^{3+2}}\right)^{2}$

EX: $y=e^{-x^{2}}$

